import numpy as np
In [4]:
arr = 10 * np.random.randn(2,5)
arr
Out[4]:
array([[-0.84567361,  7.28647028,  0.73088876, -1.45098102, -3.88956156],
       [ 3.07073042, -1.28789786, -1.6420603 ,  6.05817637,  6.10595292]])
In [5]:
arr.mean()
Out[5]:
1.4136044402485524
In [7]:
# apply for every rows
arr.mean(axis = 1)
Out[7]:
array([0.36622857, 2.46098031])
In [8]:
# apply for every cols
arr.mean(axis = 0)
Out[8]:
array([ 1.11252841,  2.99928621, -0.45558577,  2.30359768,  1.10819568])
In [10]:
arr.sum()
Out[10]:
14.136044402485524
In [12]:
np.median(arr, axis = 1)
Out[12]:
array([-0.84567361,  3.07073042])
In [13]:
unsorted = np.random.randn(10)
unsorted
Out[13]:
array([-0.53667066,  0.65386895, -1.42620924, -2.12688789, -0.30355003,
        0.85132587, -0.79651244, -0.84666615,  1.03276588,  0.7316291 ])
In [26]:
sorted = np.array(unsorted)
sorted.sort()

print(sorted)
print()
print(unsorted)
[-2.12688789 -1.42620924 -0.84666615 -0.79651244 -0.53667066 -0.30355003
  0.65386895  0.7316291   0.85132587  1.03276588]

[-2.12688789 -1.42620924 -0.84666615 -0.79651244 -0.53667066 -0.30355003
  0.65386895  0.7316291   0.85132587  1.03276588]
None
In [28]:
unsorted.sort()
unsorted
Out[28]:
array([-2.12688789, -1.42620924, -0.84666615, -0.79651244, -0.53667066,
       -0.30355003,  0.65386895,  0.7316291 ,  0.85132587,  1.03276588])
In [29]:
array = np.array([1,2,3,5,6,2,3,2,1])
np.unique(array)
Out[29]:
array([1, 2, 3, 5, 6])
In [30]:
s1 = np.array(['desk', 'chair','bulb'])
s2 = np.array(['lamp', 'chair','bulb'])
print(s1, s2)
['desk' 'chair' 'bulb'] ['lamp' 'chair' 'bulb']
In [31]:
np.intersect1d(s1, s2)
Out[31]:
array(['bulb', 'chair'], dtype='<U5')
In [32]:
np.union1d(s1, s2)
Out[32]:
array(['bulb', 'chair', 'desk', 'lamp'], dtype='<U5')
In [34]:
np.setdiff1d(s1, s2) #elements in s1 that are not in s2
Out[34]:
array(['desk'], dtype='<U5')
In [35]:
np.in1d(s1, s2) #which element of s1 is also in s2
Out[35]:
array([False,  True,  True])
In [36]:
#broadcasting
arr = np.zeros((4,3))
In [37]:
arr
Out[37]:
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
In [42]:
rowToAdded = np.array([1,0,2])
rowToAdded
Out[42]:
array([1, 0, 2])
In [40]:
arr + rowToAdded
res = arr + rowToAdded
res
Out[40]:
array([[1., 0., 2.],
       [1., 0., 2.],
       [1., 0., 2.],
       [1., 0., 2.]])
In [44]:
colToAdded = np.array([[0,1,2]])
colToAdded
Out[44]:
array([[0, 1, 2]])
In [45]:
res = arr + colToAdded
res
Out[45]:
array([[0., 1., 2.],
       [0., 1., 2.],
       [0., 1., 2.],
       [0., 1., 2.]])
In [ ]:
 


'Python Library > Numpy' 카테고리의 다른 글

Day 4. Image Processing with a numpy -02  (0) 2019.06.12
Day 4. Image Processing with a numpy - 01  (0) 2019.06.12
Day 3. Numpy01  (0) 2019.06.11

+ Recent posts