import numpy as np
In [4]:
arr = 10 * np.random.randn(2,5)
arr
Out[4]:
In [5]:
arr.mean()
Out[5]:
In [7]:
# apply for every rows
arr.mean(axis = 1)
Out[7]:
In [8]:
# apply for every cols
arr.mean(axis = 0)
Out[8]:
In [10]:
arr.sum()
Out[10]:
In [12]:
np.median(arr, axis = 1)
Out[12]:
In [13]:
unsorted = np.random.randn(10)
unsorted
Out[13]:
In [26]:
sorted = np.array(unsorted)
sorted.sort()
print(sorted)
print()
print(unsorted)
In [28]:
unsorted.sort()
unsorted
Out[28]:
In [29]:
array = np.array([1,2,3,5,6,2,3,2,1])
np.unique(array)
Out[29]:
In [30]:
s1 = np.array(['desk', 'chair','bulb'])
s2 = np.array(['lamp', 'chair','bulb'])
print(s1, s2)
In [31]:
np.intersect1d(s1, s2)
Out[31]:
In [32]:
np.union1d(s1, s2)
Out[32]:
In [34]:
np.setdiff1d(s1, s2) #elements in s1 that are not in s2
Out[34]:
In [35]:
np.in1d(s1, s2) #which element of s1 is also in s2
Out[35]:
In [36]:
#broadcasting
arr = np.zeros((4,3))
In [37]:
arr
Out[37]:
In [42]:
rowToAdded = np.array([1,0,2])
rowToAdded
Out[42]:
In [40]:
arr + rowToAdded
res = arr + rowToAdded
res
Out[40]:
In [44]:
colToAdded = np.array([[0,1,2]])
colToAdded
Out[44]:
In [45]:
res = arr + colToAdded
res
Out[45]:
In [ ]:
'Python Library > Numpy' 카테고리의 다른 글
Day 4. Image Processing with a numpy -02 (0) | 2019.06.12 |
---|---|
Day 4. Image Processing with a numpy - 01 (0) | 2019.06.12 |
Day 3. Numpy01 (0) | 2019.06.11 |