1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# -*- coding: utf-8 -*-
"""ML_Day03_vision05_Multiclass.ipynb
Automatically generated by Colaboratory.
Original file is located at
"""
 
from google.colab import drive
drive.mount('/gdrive')
 
PATH = "/gdrive/My Drive/Colab Notebooks/resources/"
 
import matplotlib.pyplot as plt
from tensorflow import keras
import tensorflow as tf
import numpy as np
 
print(tf.__version__)
 
## download dataset as a zipfile
!wget --no-check-certificate \
    https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps.zip \
    -/tmp/rps.zip
  
!wget --no-check-certificate \
    https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps-test-set.zip \
    -/tmp/rps-test-set.zip
 
## extract zip file to temp folder
import os
import zipfile
 
local_zip = '/tmp/rps.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp/')
zip_ref.close()
 
local_zip = '/tmp/rps-test-set.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp/')
zip_ref.close()
 
## create fileName lists
 
rock_dir = os.path.join('/tmp/rps/rock')
paper_dir = os.path.join('/tmp/rps/paper')
scissors_dir = os.path.join('/tmp/rps/scissors')
 
print('total training rock images:'len(os.listdir(rock_dir)))
print('total training paper images:'len(os.listdir(paper_dir)))
print('total training scissors images:'len(os.listdir(scissors_dir)))
 
rock_files = os.listdir(rock_dir)
print(rock_files[:10])
 
paper_files = os.listdir(paper_dir)
print(paper_files[:10])
 
scissors_files = os.listdir(scissors_dir)
print(scissors_files[:10])
 
# %matplotlib inline
 
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
 
## show pictures of images in filenames
pic_index = 2
 
next_rock = [os.path.join(rock_dir, fname) 
                for fname in rock_files[pic_index-2:pic_index]]
next_paper = [os.path.join(paper_dir, fname) 
                for fname in paper_files[pic_index-2:pic_index]]
next_scissors = [os.path.join(scissors_dir, fname) 
                for fname in scissors_files[pic_index-2:pic_index]]
 
for i, img_path in enumerate(next_rock+next_paper+next_scissors):
  #print(img_path)
  img = mpimg.imread(img_path)
  plt.imshow(img)
  plt.axis('Off')
  plt.show()
 
import tensorflow as tf
import keras_preprocessing
from keras_preprocessing import image
from keras_preprocessing.image import ImageDataGenerator
 
## create image generator with options
TRAINING_DIR = "/tmp/rps/"
training_datagen = ImageDataGenerator(
      rescale = 1./255,
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')
 
VALIDATION_DIR = "/tmp/rps-test-set/"
validation_datagen = ImageDataGenerator(rescale = 1./255)
 
train_generator = training_datagen.flow_from_directory(
    TRAINING_DIR,
    target_size=(150,150),
    class_mode='categorical'
)
 
validation_generator = validation_datagen.flow_from_directory(
    VALIDATION_DIR,
    target_size=(150,150),
    class_mode='categorical'
)
 
## 4 convolution and maxpooling layer with Dropout
## using softmax since we are doing multiclass classification
model = tf.keras.models.Sequential([
    # Note the input shape is the desired size of the image 150x150 with 3 bytes color
    # This is the first convolution
    tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(1501503)),
    tf.keras.layers.MaxPooling2D(22),
    # The second convolution
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    # The third convolution
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    # The fourth convolution
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    # Flatten the results to feed into a DNN
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dropout(0.5),
    # 512 neuron hidden layer
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(3, activation='softmax')
])
 
 
model.summary()
 
model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
 
history = model.fit_generator(train_generator, epochs=25, validation_data = validation_generator, verbose = 1)
 
model.save("rps.h5")
 
## we can see that validation accuracy's fluctuation..
 
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
 
epochs = range(len(acc))
 
plt.plot(epochs, acc, 'r', label='Training accuracy')
plt.plot(epochs, val_acc, 'b', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend(loc=0)
plt.figure()
 
 
plt.show()
 
cs



참고자료 및 출처 : Convolutional Neural Networks in TensorFlow - Weak 4 Exercise

+ Recent posts