import pandas as pd
In [4]:
ser = pd.Series([100, 200, 300, 400, 500],[ 'tom','bob','nancy','dan', 'eric'])
ser
Out[4]:
In [5]:
ser = pd.Series([100, 'foo', 300, 400, 500],[ 'tom','bob','nancy','dan', 'eric'])
ser
Out[5]:
In [6]:
ser.index
Out[6]:
In [7]:
ser['nancy'] , ser.loc['nancy']
Out[7]:
In [8]:
ser[['nancy', 'bob']]
Out[8]:
In [9]:
ser[[4, 3, 1]]
Out[9]:
In [10]:
ser.iloc[[4, 3, 1]]
Out[10]:
In [11]:
'bob' in ser #check if there is 'bob' index in serise
Out[11]:
In [12]:
ser * 2
Out[12]:
In [13]:
ser
Out[13]:
In [14]:
ser[['nancy','eric',]] ** 2
Out[14]:
In [15]:
d = { 'one' : pd.Series([100., 200., 300.], index=['apple', 'ball', 'clock']),
'two' : pd.Series([111., 222., 333., 4444.], index = ['apple','ball','cerill','dancy'])}
In [16]:
d
Out[16]:
In [17]:
df = pd.DataFrame(d)
df
Out[17]:
In [18]:
df.index
Out[18]:
In [19]:
df.columns
Out[19]:
In [20]:
pd.DataFrame(d, index = [ 'dency' , 'ball' , 'apple' ])
Out[20]:
In [21]:
pd.DataFrame(d, index = ['dency', 'ball' ,'apple'], columns = ['two','five'])
Out[21]:
In [22]:
data = [{'alex' : 1, 'joe' : 2}, {'ema' : 5 , 'dora' : 10, 'alice' : 20}]
In [23]:
pd.DataFrame(data)
Out[23]:
In [24]:
pd.DataFrame(data, index = [ 'orange', 'red' ])
Out[24]:
In [25]:
pd.DataFrame(data, columns = [ 'joe' , 'dora', 'alice'])
Out[25]:
In [26]:
df
Out[26]:
In [27]:
df['one']
Out[27]:
In [28]:
df['three'] = df['one'] * df['two']
df
Out[28]:
In [30]:
df['flag'] = df['one'] > 250
df
Out[30]:
In [35]:
three = df.pop('three')
In [34]:
three
Out[34]:
In [37]:
del df['two']
In [39]:
df.insert(2, 'copy_of_one', df['one'])
df
Out[39]:
In [40]:
df['one_upper_half'] = df['one'][:2]
df
Out[40]:
In [ ]:
'Python Library > Pandas' 카테고리의 다른 글
Day 6. Frequent operations with pandas - aggregation (0) | 2019.06.15 |
---|---|
Day 6. Frequent operations with pandas - subsetting, filtering, delegation (0) | 2019.06.15 |
Day 6. Simple visualization with pandas (0) | 2019.06.15 |
Day 6.Movie Data Analysis Part.2 (0) | 2019.06.15 |
Day 5.Movie Data Analysis Part.1 (0) | 2019.06.13 |