from pandas import *
In [42]:
ratings.describe()
Out[42]:
In [44]:
ratings.corr()
Out[44]:
In [48]:
ratings['rating'].describe()
Out[48]:
In [49]:
ratings['rating'].mean()
Out[49]:
In [50]:
ratings.mean()
Out[50]:
In [51]:
ratings['rating'].min()
Out[51]:
In [52]:
ratings['rating'].std()
Out[52]:
In [53]:
ratings['rating'].mode() # what occur most frequantly
Out[53]:
In [54]:
ratings.corr()
Out[54]:
In [56]:
filter_l = ratings['rating'] > 5 # create boolean series
filter_l.any() #check if any true in series
Out[56]:
In [62]:
movies.shape
Out[62]:
In [63]:
movies.head()
Out[63]:
In [65]:
movies.isnull().any()
Out[65]:
In [66]:
ratings.shape
Out[66]:
In [67]:
ratings.isnull().any()
Out[67]:
In [68]:
tags.shape
Out[68]:
In [69]:
tags.isnull().any()
Out[69]:
In [70]:
tags = tags.dropna()
tags.head()
Out[70]:
In [ ]:
'Python Library > Pandas' 카테고리의 다른 글
Day 6. Frequent operations with pandas - aggregation (0) | 2019.06.15 |
---|---|
Day 6. Frequent operations with pandas - subsetting, filtering, delegation (0) | 2019.06.15 |
Day 6. Simple visualization with pandas (0) | 2019.06.15 |
Day 5.Movie Data Analysis Part.1 (0) | 2019.06.13 |
Day 5.Pandas (0) | 2019.06.13 |